State of the Matrix Dart SDK 2024

td
matrix: @td:technodisaster.com
email, fedi: td@technodisaster.com

Matrix Dart SDK

- A matrix dart sdk, just released v0.33.0
- Made by the team at Famedly and external contributors
- Opensource, AGPL-3.0 license

- Fairly well tested, around 60% coverage and has integration tests

Used by

- Gematik, as their reference SDK.

- Across all the pharmacies in Germany via Gedisa.

- Fluffychat, your cutest client.

- By insurance providers and consumers someday? (maybe)
- And ofcourse - Famedly, an approved TI-Messenger.

Structure

clients - fluffychat, famedly, etc

optional SDK extensions, f.ex - ti-messenger-client-sdk

flutter_olm matrix-dart-sdk

dart_openapi_codegen

Features!

Database

- Bydefault it uses sqlite for native platforms and indexedDB on web
- Provides you with a thin API if you want to use your own database
- Caching layer to make database queries faster

Chat application focused

- Store the last event in a room separately to make database queries more efficient
- Complete offline mode support

- Timeline has helpers which allow you to granularly update your Ul

- Important state events preload for fast room list view

Chats

L[>

=]

&)

T e2ee test ® Live
tx Active call
O
N
12:47 AM
Al alerts

alerts: FIRING >> Lessthan... XN @

Crypto

- Currently on olm, minimum version 3.2.7 (fallback key functions)
- Planned to move to vodozemac
- Already existing private experimental repository

Compute API

- Hook time consuming arithmetic stuff into a different compute zone like a thread or a
dart isolate.

- Auto fallback on main thread

Everything is reactive and observable

- Login state change
client.onLoginStateChanged.stream.listen(
(state) async => await _handlelLoginStateChanged,

.
)

- Key verification request
client.onKeyVerificationRequest.stream.listen

- Participants change in a call
_groupCall .matrixRTCEventStream.stream.listen((event) async {
if (event is ParticipantsChangeEvent)
glayAudioOnParticipantChange(event);

Native RTC

- Customizable RTC backends allow you to easily hook your own SFU
- Support native peer to peer webrtc calls

- Supports livekit and mesh backends for group calls

- (even has experimental cloudflare SFU support!)

... to our sponsotr!

It actually makes stuff easier for
you!

UIA

Easy to handle UIA requests.

- client.onUiaRequest.stream.listen

let auth = client.matrix_auth();
let mut try_login = true;

future: () => client.uiaRequestBackground(if let Err(resp) = auth.register(RegistrationRequest::new()).await {
(auth) => client.deleteDevices(// FIXME: do actually check the registration types...
devicelds, if let Some(_response) = resp.as_uiaa_response() {
. let request = assign!(RegistrationRequest::new(), {
auth: auth, username: Some(self.username.clone()),
), password: Some(self.username.clone()),

auth: Some(uiaa::AuthData::Dummy(uiaa: :Dummy::new())),
b
// if this failed, we will attempt to login after.
try_login = auth.register(request).await.is_err();

SSSS

BootstrapState makes it clear what's going on in

the ssss key process.

- client.encryption! .bootstrap(onUpdate

switch (bootstrap.state) {
case BootstrapState.loading:
break;
case BootstrapState.askWipeSsss:

enum BootstrapState {

/// Existing SSSS found, should we wipe it?
askWipeSsss,

/// Ask if an existing SSSS should be userDeviceKeys
askUseExistingSsss,

/// Ask to unlock all the SSSS keys

askUnlockSsss,

/// SSSS is in a bad state, continue with potential dataloss?
askBadSsss,

/// Ask for new SSSS key / passphrase

askNewSsss,

/// Open an existing SSSS key

openExistingSsss,

/// Ask if cross signing should be wiped
askWipeCrossSigning,

/// Ask if cross signing should be set up
askSetupCrossSigning,

/// Ask if online key backup should be wiped
askWipeOnlineKeyBackup,

/// Ask if the online key backup should be set up
askSetupOnlineKeyBackup,

enum KeyVerificationState {

Key verifications askChoice,

askAccept,
Easy to handle key verifications with KeyVerificationState 35kssss,

- client.onKeyVerificationRequest.stream.listen ... waitingAccep‘t ’
- client.userDeviceKeys[client.userID].startVerification();
askSas,
showQRSuccess, // scanner ¢
switch (request.state) { confirmQRScan, // shower af
case KeyVerificationState.askAccept: waitingSas,
// your UL . _ done,
request.acceptVerification() e

Easily pluggable call backends

final List<CallBackend> backupBackends = [];
if (ChatConfigs.livekitGroupCallsEnabled) {
backupBackends.add (
LiveKitBackend(
livekitServiceUrl: ChatConfigs.features!.livekitJwtServiceUrl!,
livekitAlias: widget.roomld,
)'
)i
}
backupBackends.add (MeshBackend());

Next steps:

- Sliding sync support, maybe even client side

- Migration to vodozemac

- New MAS flow

- Better codegen from the openapi matrix spec
- Database tweaks

- Complement-Crypto?

Thank you!
any questions?

td
matrix: @td:technodisaster.com
email, fedi: td@technodisaster.com

